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Abstract

Summary: Genomes of emerging model organisms are now being sequenced at very low cost.

However, obtaining accurate gene predictions remains challenging: even the best gene prediction algo-

rithms make substantial errors and can jeopardize subsequent analyses. Therefore, many predicted

genes must be time-consumingly visually inspected and manually curated. We developed GeneValidator

(GV) to automatically identify problematic gene predictions and to aid manual curation. For each gene,

GV performs multiple analyses based on comparisons to gene sequences from large databases. The re-

sulting report identifies problematic gene predictions and includes extensive statistics and graphs for

each prediction to guide manual curation efforts. GV thus accelerates and enhances the work of biocura-

tors and researchers who need accurate gene predictions from newly sequenced genomes.

Availability and implementation: GV can be used through a web interface or in the command-line.

GV is open-source (AGPL), available at https://wurmlab.github.io/tools/genevalidator.

Contact: y.wurm@qmul.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The plummeting costs of DNA sequencing (Wetterstrand, 2015) have

made de novo genome sequencing accessible to individual laboratories

and even researchers (Nygaard and Wurm, 2015). However, identify-

ing genes in a newly assembled genome remains challenging.

Traditional gene prediction approaches involve either ab initio predic-

tion via modelling of coding versus non-coding sequence or similarity-

based prediction using independent sources. Relevant sources include

protein-coding sequences from other organisms, or peptide or tran-

scriptome sequences from the organism being studied. Modern algo-

rithms combine both approaches (Cantarel et al., 2008; Korf, 2004;

Stanke et al., 2008). The recent ability of obtaining large amounts of

RNA sequences at low cost (Hou et al., 2015) has led to a dramatic

improvement in the performance of similarity-based algorithms and

thus gene prediction quality (Goodswen et al., 2012) albeit only for

expressed genes. Despite this, the accuracy of gene prediction tools

(e.g. Alioto et al., 2013; Cantarel et al., 2008; Keller et al., 2011;

Lomsadze et al., 2014; Wilkerson et al., 2006) remains disappointing

(Yandell and Ence, 2012). Typical errors include missing exons, non-

coding sequence retention in exons, fragmenting genes and merging

neighboring genes. Automated gene prediction quality evaluation

tools analyze exon boundaries (Eilbeck et al., 2009; Yandell and

Ence, 2012) or focus on subsets of highly conserved genes (Parra

et al., 2007). Unfortunately, such tools ignore most of the information

present in frequently updated databases such as SwissProt or

Genbank NR. Visual analysis is thus required to identify errors and

manual curation is needed to fix them. This requires tens of minutes

to days for one gene (Howe et al., 2008) – a daunting task when con-

sidering analyses of dozens of species each with thousands of genes

(Pray, 2008; Simola et al., 2013).
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We thus created GeneValidator (GV), a tool to evaluate quality

of protein-coding gene predictions based on comparisons with simi-

lar known proteins from public and private databases. GV provides

quality evaluations in text formats for automated analysis and in

highly visual formats for inspection by researchers.

2 Approach

For each new gene prediction, BLAST (Camacho et al., 2009) identi-

fies similar sequences in Swiss-Prot (The UniProt Consortium,

2014), Genbank NR (Benson et al., 2010) or other relevant data-

bases. Subsequently, GV performs up to seven comparisons between

the gene prediction and the most highly significant hit sequences or

high-scoring segment pairs (HSPs). The results of each comparison

indicate whether characteristics of the query gene prediction deviate

from those of hit sequences. The following four comparisons are

performed on all queries:

Length: We compare the length of the query sequence to the

lengths of the most significant BLAST hits using hierarchical cluster-

ing (Fig. 1a, e) and a rank test. A particularly low or high rank can

suggest that the query is too short or too long.

Coverage: We determine whether hit regions match the query se-

quence more than once using a Wilcoxon test. Significance suggests

that the query includes duplicated regions (e.g. resulting from merg-

ing of tandem gene duplicates).

Conserved regions: We align the query to a position specific scor-

ing matrix profile derived from a multiple alignment of the ten most

significant BLAST hits. This identifies potentially missing or extra

regions (Fig. 1d, h and Supplementary Fig. S2).

Different genes: Deviation from unimodality of HSP start and

stop coordinates indicates that HSPs map to multiple regions of the

query. If this is the case, we perform a linear regression between

HSP start and stop coordinates, weighting data points proportion-

ally to BLAST significance (see Fig. 1b, c, f, g). Regression slopes be-

tween 0.4 and 1.2 (empirically chosen values) suggest that the query

prediction combines two different genes (see Supplementary Fig.

S1).

Two additional analyses are performed on nucleotide queries:

Ab initio Open Reading Frame (ORF): We expect a single major

ORF. Frameshifts, retained introns or merged genes can lead to pres-

ence of multiple major ORFs.

Similarity-based ORFs: We expect all BLAST hits to align within

a single ORF. This test is more sensitive than the previous when a

query has HSPs in multiple reading frames.

An additional analysis is performed for MAKER gene

predictions:

MAKER RNASeq Quality Index: MAKER gene predictions in-

clude a quality index (in the FASTA defline) indicating the extent to

which the prediction is supported by RNAseq evidence. GV con-

siders this information when it is available.

Each analysis of each query returns a binary result (i.e. similar

or different to BLAST hits) according to a P-value or an empiric-

ally determined cutoff. The results for each query are combined

into an indicative overall quality score from 0 to 100. The scores

allow comparing overall qualities of different gene sets, or identify-

ing the highest- or lowest-quality gene predictions within a gene

set.

The individual and global scores are provided in JSON and tab-

delimited text formats, and as an HTML report that can be viewed

in a web browser (Supplementary Fig. S3). Importantly, this

HTML report includes up to five graphs for each gene (Fig. 1), as

well as explanations of the analyses and results. These visualiza-

tions can be particularly useful to biocurators improving gene

predictions.

3 Usage

GV is installed as a ruby gem (Bonnal et al., 2012). The user pro-

vides FASTA protein or nucleotide gene predictions; BLAST is run

remotely (NCBI) or on a local database, or the user provides an

existing BLAST output. Alternatively, a web wrapper provides an

elegant graphical interface and a programmatic jQuery API. Finally,

GV can already be used from within the Afra genome annotation

editor (Priyam et al. unpublished).

4 Discussion

GV’s power comes from leveraging large, frequently-updated data-

bases, using multiple metrics, input/output format flexibility and im-

portantly its multiple data visualization approaches. Indeed,

visualization is crucial for understanding genomic comparisons

(Nielsen et al., 2010; Riba-Grognuz et al., 2011).

The code underlying GV respects best practices in scientific soft-

ware development (Wurm, 2015). However, GV’s analyses depend
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Fig. 1. Contrasting GV graphs: (a), (e) sequence lengths; (b), (f) HSP offsets; (c), (g) overviews of hit regions; (d), (h) conserved regions. Graphs (a–d) were pro-

duced with a sequence for which GV detected no problems. The other graphs show typical problems: (e) query is short; (f), (g) query sequence is a fusion of unre-

lated genes; (h): query includes sequence absent from first 10 hits
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on BLAST-identification of homologs in databases which include

low-quality sequences, on expecting similar gene sequence and

structure among homologs, and on empirically chosen cutoffs.

Binary results of individual tests are thus indicative rather than infal-

lible. Similarly, GV’s overall quality evaluations are not ground

truths but indicate consistencies with database sequences.

We used two approaches to determine the appropriateness of

GV’s scoring system. GV scores for 10 000 randomly selected

Swissprot genes were significantly higher than GV scores for 10 000

randomly selected TrEMBL genes (Supplementary Fig. S4).

Similarly, 73–90% of recently updated gene models from four eu-

karyotic genomes had higher GV scores than older versions

(Supplementary Table S1; Supplementary Fig. S5). Both results are

consistent with GV appropriately quantifying gene prediction im-

provements due to manual curation or improved gene prediction

technologies. Lower GV scores for some gene predictions could be

due the reference databases containing sequences of low-quality,

new automated predictions introducing new errors and scores being

noisy for queries with few BLAST hits.

5 Future work

GV was developed with a plug-in system for adding validation

approaches. We plan to extend GV with improved orthology detec-

tion, additional validation approaches (e.g. codon usage, explicit

RNAseq support) and improved statistics (e.g. evidence-weighting

based on phylogenetic and database-quality information). In its cur-

rent form, GV already can save large amounts of time for biologists

working with newly obtained gene predictions.
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