Ants, Bees, Genomes & Evolution

@ Queen Mary University London

Evolutionary genomics of social insects

Extensive theoretical work has explained how and why complex societies evolve. However, only little is known about the genes and molecular mechanisms responsible for social phenotypes.

We have been identifying genes and mechanisms involved in the evolution of insect societies using modern genomics approaches, combining comparative genomics and transcriptomics with population genomics and behavioral experiments.

Read More
fire ants on the genomic sequence of their social chromosome

Genome bioinformatics

The recent 10,000-fold drop in the cost of DNA sequencing means that any lab can sequence anything - and lots of it. This brings exciting opportunities but also new challenges, in particular with regards to data handling, data analysis and visualization.

We develop innovative tools and approaches to facilitate modern biological work on established and emerging model organisms. We pay special attention to visualization and user experience.

Read More
how tools should be

Pollinator health

Pollinators (bees in particular) are essential for preserving biodiversity and ensuring agricultural yields, thus their worldwide decline poses important risks. Taking inspiration from biomedical approaches for understanding cancer biology, we are using modern molecular tools to determine how pollinators are affected by changing environments (e.g., pesticide exposure, habitat loss, changing climates) and their ability to cope with such changes.

We recently began sequencing hundreds of pollinator genomes and are performing population genomics analyses.

Contact

  • y.wurm [at] qmul.ac.uk
  • @yannick__
  • yannickwurm
  • 5.21, Fogg Building, Organismal Biology Department, School of Biological & Chemical Sciences, Mile End Road, E1 4NS London, UK.

[Larger Map & Local Directions]





We are grateful for support from our funders:

funding bodies