
Chapter 16

Choosing the Best Gene Predictions with GeneValidator

Ismail Moghul, Anurag Priyam, and Yannick Wurm

Abstract

GeneValidator is a tool for determining whether the characteristics of newly predicted protein-coding genes
are consistent with those of similar sequences in public databases. For this, it runs up to seven comparisons
per gene. Results are shown in an HTML report containing summary statistics and graphical visualizations
that aim to be useful for curators. Results are also presented in CSV and JSON formats for automated
follow-up analysis.
Here, we describe common usage scenarios of GeneValidator that use the JSON output results together

with standard UNIX tools. We demonstrate how GeneValidator’s textual output can be used to filter and
subset large gene sets effectively. First, we explain how low-scoring gene models can be identified and
extracted for manual curation—for example, as input for genome browsers or gene annotation tools.
Second, we show how GeneValidator’s HTML report can be regenerated from a filtered subset of
GeneValidator’s JSON output. Subsequently, we demonstrate how GeneValidator’s GUI can be used to
complement manual curation efforts. Additionally, we explain how GeneValidator can be used to merge
information from multiple annotations by automatically selecting the higher-scoring gene model at each
common gene locus. Finally, we show how GeneValidator analyses can be optimized when using large
BLAST databases.

Key words Genome annotation, Gene prediction, Gene validation, GeneValidator

1 Introduction

Using accurate gene annotations is important because they affect
subsequent analyses [1]. For some species, annotations can be
downloaded directly from a public database such as Ensembl or
NCBI [2]. For newly sequenced species, approaches to identify
protein-coding genes in a genome sequence typically combine
evidence from multiple data sources (including ab initio models,
ESTs, RNA-seq, and protein alignments) [3–5]. Whether gene
feature annotations are downloaded from a public database or are

Martin Kollmar (ed.), Gene Prediction: Methods and Protocols, Methods in Molecular Biology, vol. 1962,
https://doi.org/10.1007/978-1-4939-9173-0_16, © Springer Science+Business Media, LLC, part of Springer Nature 2019

Ismail Moghul and Anurag Priyam contributed equally to this work.

The original version of this chapter was revised. The correction to this chapter is available at https://doi.org/10.
1007/978-1-4939-9173-0_18

257

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-9173-0_16&domain=pdf
https://doi.org/10.1007/978-1-4939-9173-0_16
https://doi.org/10.1007/978-1-4939-9173-0_18
https://doi.org/10.1007/978-1-4939-9173-0_18

newly generated, they may contain errors resulting from biases of
the underlying data, algorithmic choices [6], and the general lim-
itations of a one-dimensional representation of DNA sequences.
Common errors include frameshifts, incorrect exon–intron struc-
ture, incorrect merging of adjacent genes, and incorrect splitting of
genes at long intron positions [7].

We previously described GeneValidator (GV), a tool to evaluate
the quality of protein-coding gene predictions based on compar-
isons with a database of known proteins [8]. In brief (Fig. 1), GV
first runs a BLAST search against the given database, retaining
sequences of hits with e-value stronger than 10�5. Next, GV runs
up to seven validations on each gene prediction. Each validation
tests if the characteristics of the query gene deviate from those of
similar sequences in the reference database. Based on predefined
thresholds, the result of each validation is a pass or a fail. The overall
score of the prediction is a scaled percentage of the validations that
passed. Predictions with a score lower than 75 (i.e., more than one
failed validation) may be regarded as potentially problematic.
Explanation of the approach and an overview of the data underlying
each validation are included in the HTML report, along with
several visualizations to facilitate interpretation. Detailed results
are also available in CSV and JSON format for spreadsheet and
programmatic access.

Results produced by GV depend on the quality and coverage of
the database used for validation. Furthermore, higher scores indi-
cate consistency with database sequences and not biological truths.
Several publicly available databases of protein sequences such as

Fig. 1 High-level schematic of the steps carried out by GeneValidator

258 Ismail Moghul et al.

Swiss-Prot [9], UniRef50 [9, 10], TrEMBL [9], or NR [2] can be
used with GV. The GV approach becomes increasingly reliable as
proteomes of more species are submitted to these databases by the
global research community, and as the qualities of submitted
sequences improve due to experimental validation, manual verifica-
tion by experts, and technological and algorithmic advances in
sequencing and automated gene prediction. We created GV to be
flexible. Many of GV’s features are designed to facilitate automatic
processing of large gene sets (e.g., whole-genome annotation) as
part of custom workflows. These include GV’s versatile JSON
output, ability to leverage HPC facilities, and the possibility to
use advanced BLAST search options. GV also includes a web server
that can be used as a shared resource. Here, we discuss five common
use cases of GV that can be easily incorporated into custom
workflows.

2 Installing and Running GeneValidator

GV runs on Linux and macOS. To install GV, run the command
shownbelow.Thiswill installGVandall its dependencies to adirectory
called “genevalidator” in the current working directory.

sh -c "$(curl -fsSL

https://install-genevalidator.wurmlab.com)"

The software includes example sequences to test the installa-
tion. The following command can be used to run GV on these
example sequences with the included Swiss-Prot database. GV will
print the results of validations for each gene prediction to the
terminal, ending with a summary, and the directory where detailed
results were saved to.

genevalidator --db genevalidator/blast_db/swissprot \

--num_threads 4 \

genevalidator/exemplar_data/protein_data.fa

3 GeneValidator Workflows

A gene set will almost inevitably contain some gene predictions
with low scores. It can be desirable to curate these manually. Here,
we begin by providing two approaches to facilitate inspection of
these low-scoring predictions. First (Subheading 3.1), we show
how to use GV’s JSON output to extract the sequence identifiers
of low-scoring gene predictions. Among other things, these can be
used to subset the initial gene set, to prioritize inspection in a
genome browser [11], or for annotation editing in a tool such as

Choosing the Best Gene Predictions with GeneValidator 259

Apollo [12]. Second (Subheading 3.2), we show how to create a
new HTML report by subsetting GV’s JSON output. This can
reduce the need to navigate through a long HTML report. Subse-
quently (Subheading 3.3), we introduce GV’s graphical interface.
This is helpful for rapidly viewing how GV’s validation results
change during manual curation.

We also provide guidance on two more general challenges
based on our applications of GV. First (Subheading 3.4), we show
how GV can be used to automatically select the best gene model
from multiple gene sets at each common gene locus. Furthermore
(Subheading 3.5), we show how to restrict GV to use a specific
subset of a BLAST database. This is to avoid BLAST searching
against sequences unlikely to be informative.

3.1 Extracting

Sequence Identifiers

of Low-Scoring Gene

Predictions

GV’s JSON output can be used with JQ (https://stedolan.github.
io/jq/), a command-line JSON processor (included in the GV
package), to select gene predictions matching a particular criterion
and access validation results and associated metadata. In the exam-
ple below, we extract identifiers of predictions with a score lower
than 75 (i.e., having failed more than one validation) and having at
least two BLAST hits for manual curation. The idea is that while
having two BLAST hits is insufficient for GV’s statistical tests (and
thus results in a low score), they may provide sufficient evidence for
biologically interpreting whether the prediction could be
appropriate.

1. Extract FASTA header of gene predictions that have more than
two BLAST hits and an overall score of less than 75.

jq --raw-output ".[] |

select(.no_hits >= 2 and .overall_score < 75) |

.definition" input_file_results.json \

> sequence_definitions.txt

2. Extract sequence identifier (first word of the FASTA header)
using the cut command.

cut -d " " -f 1 sequence_definitions.txt \

> sequence_ids.txt

3.2 Subsetting

the HTML Report

to Only Low-Scoring

Gene Predictions

GV’s JSON output can be filtered using JQ and input back to GV
to reproduce results for the selected gene predictions. This is useful
to create smaller HTML reports, for example, focusing on a partic-
ular gene family. In the example below, we subset GV’s output for
the low-scoring gene predictions selected in Subheading 3.1.

1. Select gene predictions that have more than two BLAST hits
and an overall score of less than 75.

jq "[.[] |

select(.no_hits >= 2 and .overall_score < 75)] |

260 Ismail Moghul et al.

https://stedolan.github.io/jq/
https://stedolan.github.io/jq/

sort_by(.overall_score)" input_file_results.json \

> input_file_results_subset.json

2. Reproduce GV’s output.

genevalidator --json input_file_results_subset.json

3.3 Using

GeneValidator Web

Server to Iteratively

Refine Gene Models

Although running GV from the command line is ideal for proces-
sing of large datasets and custom workflows, a graphical user inter-
face can facilitate iterative usage. For example, during manual
curation of gene models, running GV repeatedly as a gene model
is revised can help a curator verify that changes they are making
indeed improve the gene model. Building on the lessons learnt
when developing the SequenceServer BLAST interface [13], we
also built a graphical user interface (app) for GV that is accessible
through a web browser.

1. Launching GV app requires the path to a directory containing
one or more BLAST databases; the interface (accessible at
http://localhost:5678) is opened automatically in the default
browser.

genevalidator app --num_threads 4 \

--database_dir genevalidator/blast_db/

2. To validate gene predictions, paste the corresponding FASTA
sequences into the text area, select the database to compare to,
and click “Analyse Sequences” (Fig. 2). The results are then
shown on the same page.

We also host a GV web server at https://genevalidator.
wurmlab.com with two caveats: first, it is suitable for up to ten
queries at a time, and second, given computational constraints on
this server, we only provide the Swiss-Prot and the UniRef50
databases.

3.4 Merging Gene

Predictions from Two

Different Sources

Different gene prediction approaches are unlikely to generate iden-
tical gene models for a locus. GV can be used to select the higher-
scoring gene model for each locus from multiple gene sets. Briefly,
we first identify annotations corresponding to the same locus from
the different sources (steps 1–3 below). Subsequently, we generate
a FASTA file containing alternative predictions for each locus and
use GV’s “--select_single_best” option to select the higher
scoring one (step 4 below).

We make multiple simplifying assumptions to generate a
mapping of annotations corresponding to the same locus from
the different sources (steps 1–3 below). Specifically, we assume
that we have a single transcript (splice form) per source per locus,
that gene predictions from different loci do not overlap, and that
annotations are available in a GFF3 format file. Often, additional

Choosing the Best Gene Predictions with GeneValidator 261

https://genevalidator.wurmlab.com/
https://genevalidator.wurmlab.com/

preprocessing of gene sets will be necessary to fulfill these
assumptions.

1. Intersect the transcript annotations in the GFF3 files (requires
prior installation of bedtools). We require that both hits are on
the same strand (“-s”). If comparing more than two GFF3
files, see the bedtools documentation (“-b” can take multiple
values). The output file contains the entire input record from
both input files (“-wa -wb”).

awk ’/\tmRNA\t/’ geneset1.gff > geneset1_mrnas.gff

awk ’/\tmRNA\t/’ geneset2.gff > geneset2_mrnas.gff

bedtools intersect -wa -wb -s \

-a geneset1_mrnas.gff -b geneset2_mrnas.gff \

> geneset_overlaps.bed

2. Extract the GFF3 attributes columns (i.e., the 9th and 18th
column) which contain the sequence identifiers.

Fig. 2 A screenshot of the GeneValidator web application as launched from the command line via “geneva-
lidator app” or by accessing https://genevalidator.wurmlab.com

262 Ismail Moghul et al.

https://genevalidator.wurmlab.com/

awk ’{printf ("%s;\t%s;\n", $9, $18)}’ \

geneset_overlaps.bed > attributes_columns.tsv

3. Extract the sequence identifiers from the attributes columns.

perl -nle ’@ids = /ID=(.*?);/g;

print join("\t", @ids) if @ids’ \

attributes_columns.tsv > mapping_ids.tsv

4. Now that we have identifiers of the annotations corresponding
to the same locus from both the gene sets, their respective
sequences can be extracted and then used with GV’s “--
select_single_best” option.
(a) Create indexes for each of the FASTA files (requires prior

installation of samtools).

samtools faidx geneset1.fasta

samtools faidx geneset2.fasta

(b) Create output FASTA file.

touch output.fa

(c) Loop over the “mapping_ids.tsv” file. Extract FASTA
sequence for each ID, and write them to a temporary
FASTA file. Run GV using the “--select_single_b-
est” option on the temporary FASTA file. The “--
select_single_best” mode prints the highest-scoring
sequence to STDOUT in FASTA format, which is written
to the output file previously created.

cat mapping_ids.tsv | while read -r line; do

echo "$line" | cut -f 1 | \

xargs samtools faidx geneset1.fasta \

> gv_run_tmp.fa

echo "$line" | cut -f 2 | \

xargs samtools faidx geneset2.fasta \

>> gv_run_tmp.fa

genevalidator --select_single_best gv_run_tmp.fa \

>> output.fa

rm gv_run_tmp.fa

done

It may be desirable to include gene models unique to both sets
in the final output. We leave this as an exercise for the reader.

Choosing the Best Gene Predictions with GeneValidator 263

3.5 Using NCBI’s

Nonredundant

Database of Protein

Sequences with GV

While it is desirable to validate gene predictions against a gold
standard database like Swiss-Prot, its limited coverage [9] makes
this challenging for many species. At the same time, technological
advances continue to increase the quality of automated predictions
[14]. This makes it tempting to use a more comprehensive database
such as NCBI’s nonredundant collection (NR) of manually
reviewed as well as automatically generated protein sequences for
validation. However, the large size of the NR database means
BLAST searches can take days. We show how to use BLAST’s ability
to restrict searches to a list of identifiers [15] to accelerate a GV
analysis. For this, we first restrict the BLAST search to a particular
taxonomic lineage to avoid BLAST searching against sequences
unlikely to be informative. Additionally, we exclude sequences
from the focal species to avoid circular self-validation.

For the implementation below, we consider the example of the
red fire ant, Solenopsis invicta [16]. We first obtain taxon identifiers
of all species in Eukaryota (id: 2759). Subsequently, we exclude all
Solenopsis species (taxonomy id: 13685). We then obtain GenInfo
identifiers (GI numbers) of all sequences in the retained taxa. We
finally run GV using this list.

1. Obtain a list of eukaryotic taxon identifiers (this requires prior
installation of Taxonkit [17]).

taxonkit list --ids 2759 --indent "" \

> taxon_ids_eukaryotes.txt

2. Obtain a list of Solenopsis taxon identifiers.

taxonkit list --ids 13685 --indent "" \

> taxon_ids_solenopsis.txt

3. Subtract the two.

grep -Fvx -f taxon_ids_solenopsis.txt \

taxon_ids_eukaryotes.txt > taxon_ids.txt

4. Download a tab-delimited file from NCBI linking taxon ids
and GI Numbers.

curl -L -O

ftp://ftp.ncbi.nih.gov/pub/taxonomy/accession2taxid/prot.

accession2taxid.gz

5. Use csvtk (https://github.com/shenwei356/csvtk), a multi-
threaded CSV/TSV processor (packaged with GV), to extract
the rows where the taxid is in the taxon_ids.txt file.

zcat prot.accession2taxid.gz | \

csvtk --tabs grep --fields taxid \

--pattern-file taxon_ids.txt | \

264 Ismail Moghul et al.

https://github.com/shenwei356/csvtk

cut -f 4 | tail -n +2 > gi_list.txt

6. Finally, we pass this file to GV using “--blast_option”
option.

genevalidator --blast_options "-gilist gi_list.txt" \

--db nr --num_threads 40 geneset1.fa

Starting with BLASTþ version 2.8.0 (in development at the
time of this writing), steps 4 and 5 can be skipped, and the list of
taxon ids from step 3 can be passed directly to BLAST using the
new “-taxidlist” option.

4 Tips and Tricks

1. GV’s overall score is based on the percentage of validations that
pass, i.e., where the score is above a threshold that we have
determined to be appropriate. To emphasize the fact that GV
results are highly dependent on the quality of information in
databases and cannot be solely relied upon to classify a “per-
fect” gene prediction, the overall score is decreased by 10%.
The highest possible score is thus 90%.

2. GV will run the validations provided there are at least five
BLAST hits for a given prediction. This can be changed using
the “--min_blast_hits” option. A higher number of
BLAST hits will increase the relevance of the comparisons.

3. GV generates several summary statistics for the input gene set.
These include first, second, and third quartiles of the overall
scores, number of good and bad predictions, and number of
predictions with insufficient BLAST hits. In addition to
providing an overview of the quality of the input gene set, the
summary statistics can be used to choose between predictions
from two different sources.

4. GV includes a tool for downloading sequence databases from
NCBI to use for comparisons (i.e., “genevalidator ncbi-
blast-dbs”). This is a parallelized alternative to the “upda-
te_blastdb.pl” script included in BLASTþ package.

5. GV is also able to run BLAST searches on NCBI servers using
BLAST’s ‘-remote’ option (e.g., ‘genevalidator --db
’swissprot -remote’ geneset.fa’). This has the benefit
of being able to immediately use the most up-to-date version of
a given database. However, using a remote BLAST database is
very slow. We recommended using this for validating only a few
genes (e.g., fewer than 25).

Choosing the Best Gene Predictions with GeneValidator 265

6. It is possible to run BLAST independently and to subsequently
provide the output XML (“-outfmt 5”) or tab-delimited (“-
outfmt 6”) to GV. This can be particularly useful if BLAST
results have already been produced for other analyses or when
BLAST can be run on a cluster.

7. BLAST is often the slowest step of GV pipeline, especially when
working with large datasets. In such cases, DIAMOND [18]
can be used instead of BLAST for (up to 20,000�!) faster
database searching. Since DIAMOND’s XML output is com-
patible with BLAST, it can be used directly with GValong with
one additional input, i.e., a FASTA file of hit sequences (when
used with BLAST, GV is able to automatically extract hit
sequences from BLAST database). Our wiki (https://github.
com/wurmlab/genevalidator/wiki) provides detailed instruc-
tions for using GV with DIAMOND.

8. To resume a terminated analysis, GV can be run with “--
resume” option. In resume mode, GV skips previously suc-
cessful steps, including running BLAST. Gene predictions that
were successfully processed are skipped as well.

9. It is possible to split an input gene set into multiple chunks, run
GV on each chunk across multiple compute nodes, and com-
bine the results for each chunk into a single report.
(a) After splitting the input file and running GVon each input

file, the following command can be used to merge the
individually produced GV JSON files.

cat */*.json | jq ".[]" | jq --slurp "." > MERGED_JSON

(b) The merged JSON can then be used to produce a single
report for the whole gene set.

genevalidator --json MERGED_JSON

Acknowledgments

This work was supported by the Natural Environment Research
Council [grant NE/L00626X/1] and the Biotechnology and
Biological Sciences Research Council [grant BB/K004204/1 and
BB/M009513/1]. This research used Queen Mary’s Apocrita
HPC facility, supported by QMUL Research-IT (https://doi.
org/10.5281/zenodo.438045).

266 Ismail Moghul et al.

https://github.com/wurmlab/genevalidator/wiki
https://github.com/wurmlab/genevalidator/wiki
https://doi.org/10.5281/zenodo.438045
https://doi.org/10.5281/zenodo.438045

References

1. Yandell M, Ence D (2012) A beginner’s guide
to eukaryotic genome annotation. Nat Rev
Genet 13:329–342

2. Benson DA, Cavanaugh M, Clark K, Karsch-
Mizrachi I, Ostell J, Pruitt KD et al (2018)
GenBank. Nucleic Acids Res 46:D41–D47

3. Holt C, Yandell M (2011) MAKER2: an anno-
tation pipeline and genome-database manage-
ment tool for second-generation genome
projects. BMC Bioinformatics 12:491

4. Hoff KJ, Lange S, Lomsadze A,
Borodovsky M, Stanke M (2016) BRAKER1:
unsupervised RNA-Seq-based genome annota-
tion with GeneMark-ET and AUGUSTUS.
Bioinformatics 32:767–769

5. Keilwagen J, Hartung F, Paulini M, Twardziok
SO, Grau J (2018) Combining RNA-seq data
and homology-based gene prediction for
plants, animals and fungi. BMC Bioinformatics
19:189

6. Schnoes AM, Brown SD, Dodevski I, Babbitt
PC (2009) Annotation error in public data-
bases: misannotation of molecular function in
enzyme superfamilies. PLoS Comput Biol 5:
e1000605

7. Steijger T, Abril JF, Engström PG,
Kokocinski F, RGASP Consortium, Hubbard
TJ et al (2013) Assessment of transcript recon-
struction methods for RNA-seq. Nat Methods
10:1177–1184

8. Drăgan M-A, Moghul I, Priyam A, Bustos C,
Wurm Y (2016) GeneValidator: identify pro-
blems with protein-coding gene predictions.
Bioinformatics 32(10):1559–1561

9. The UniProt Consortium (2017) UniProt: the
universal protein knowledgebase. Nucleic
Acids Res 45:D158–D169

10. Suzek BE, Wang Y, Huang H, McGarvey PB,
Wu CH, The UniProt Consortium (2015)

UniRef clusters: a comprehensive and scalable
alternative for improving sequence similarity
searches. Bioinformatics 31:926–932

11. Buels R, Yao E, Diesh CM,Hayes RD,Munoz-
Torres M, Helt G et al (2016) JBrowse:
a dynamic web platform for genome visualiza-
tion and analysis. Genome Biol 17:66

12. Lee E, Helt GA, Reese JT, Munoz-Torres MC,
Childers CP, Buels RM et al (2013) Web
Apollo: a web-based genomic annotation edit-
ing platform. Genome Biol 14:R93

13. Priyam A, Woodcroft BJ, Rai V, Munagala A,
Moghul I, Ter F et al (2015) Sequenceserver: a
modern graphical user interface for custom
BLAST databases. bioRxiv. https://doi.org/
10.1101/033142

14. Minoche AE, Dohm JC, Schneider J,
Holtgr€awe D, Viehöver P, Montfort M et al
(2015) Exploiting single-molecule transcript
sequencing for eukaryotic gene prediction.
Genome Biol 16:549

15. Bethesda (MD): National Center for Biotech-
nology Information (2008) BLAST® Com-
mand Line Applications User Manual
[Internet] - Limiting a Search with a List of
Identifiers. https://www.ncbi.nlm.nih.gov/
books/NBK279673. Accessed 13 Sept 2018

16. Wurm Y, Wang J, Riba-Grognuz O,
Corona M, Nygaard S, Hunt BG et al (2011)
The genome of the fire ant Solenopsis
invicta. Proc Natl Acad Sci U S A 108
(14):5679–5684

17. Shen W, Xiong J (2019) TaxonKit: a cross-
platform and efficient NCBI taxonomy toolkit.
bioRxiv. https://doi.org/10.1101/513523

18. Buchfink B, Xie C, Huson DH (2015) Fast and
sensitive protein alignment using DIAMOND.
Nat Methods 12:59–60

Choosing the Best Gene Predictions with GeneValidator 267

https://doi.org/10.1101/033142
https://doi.org/10.1101/033142
https://www.ncbi.nlm.nih.gov/books/NBK279673
https://www.ncbi.nlm.nih.gov/books/NBK279673
https://doi.org/10.1101/513523

	Chapter 16: Choosing the Best Gene Predictions with GeneValidator
	1 Introduction
	2 Installing and Running GeneValidator
	3 GeneValidator Workflows
	3.1 Extracting Sequence Identifiers of Low-Scoring Gene Predictions
	3.2 Subsetting the HTML Report to Only Low-Scoring Gene Predictions
	3.3 Using GeneValidator Web Server to Iteratively Refine Gene Models
	3.4 Merging Gene Predictions from Two Different Sources
	3.5 Using NCBI´s Nonredundant Database of Protein Sequences with GV

	4 Tips and Tricks
	References

